Switching pyridine nucleotide specificity in P450 BM3: mechanistic analysis of the W1046H and W1046A enzymes.
نویسندگان
چکیده
Flavocytochrome P450 BM3 is a member of the diflavin reductase enzyme family. Members include cytochrome P450 reductase, nitric-oxide synthase, methionine synthase reductase, and novel oxidoreductase 1. These enzymes show a strong preference for NADPH over NADH as reducing coenzyme. An aromatic residue stacks over the FAD isoalloxazine ring in each enzyme, and in some cases it is important in controlling coenzyme specificity. In P450 BM3, the aromatic residue inferred from sequence alignments to stack over the FAD is Trp-1046. Mutation to Ala-1046 and His-1046 effected a remarkable coenzyme specificity switch. P450 BM3 W1046A/W106H FAD and reductase domains are efficient NADH-dependent ferricyanide reductases with selectivity coefficients (k(cat)/K(m)(NADPH)/k(cat)/K(m)(NADH)) of 1.5, 67, and 8571 for the W1046A, W1046H, and wild-type reductase domains, respectively. Stopped-flow photodiode array absorption studies indicated a charge-transfer intermediate accumulated in the W1046A FAD domain (and to a lesser extent in the W1046H FAD domain) and was attributed to formation of a reduced FADH(2)-NAD(P)(+) charge-transfer species, suggesting a relatively slow rate of release of NAD(P)(+) from reduced enzymes. Unlike wild-type enzymes, there was no formation of the blue semiquinone species observed during reductive titration of the W0146A/W146H FAD and reductase domains with dithionite or NAD(P)H. This was a consequence of elevation of the semiquinone/hydroquinone couple of the FAD with respect to the oxidized/semiquinone couple, and a concomitant approximately 100-mV elevation in the 2-electron redox couple for the enzyme-bound FAD (-320, -220, and -224 mV in the wild-type, W1046A, and W1046H FAD domains, respectively).
منابع مشابه
Lysosomal Oxidative Stress Cytotoxicity Induced by Dacarbazine and It’s Pyridine Derivative in Hepatocytes
Dacarbazine (DTIC) is a synthetic chemical antitumor agent which is used to treat malignant melanoma and Hodgkin’s disease. DTIC is a prodrug which is converted to an active form undergoing demethylation by liver enzymes. The active form prevents the progress of disease via alkylation of DNA strand. In the structure of this drug, the imidazole ring, a triazen chain and carboxamide group ex...
متن کاملControl of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using structure-based mutagenesis.
The potential of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium for biocatalysis and biotechnological application is widely acknowledged. The catalytic and structural analysis of the Ala82Phe mutant of P450 BM3 has shown that filling a hydrophobic pocket near the active site improved the binding of small molecules, such as indole (see Huang et al., J. Mol. Biol., 2007, 373, 633) a...
متن کاملA redox-mediated Kemp eliminase
The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations...
متن کاملEfficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space.
In the present study, the diversity of a library of drug-metabolizing bacterial cytochrome P450 (P450) BM3 mutants was evaluated by a liquid chromatography-mass spectrometry (LC-MS)-based screening method. A strategy was designed to identify a minimal set of BM3 mutants that displays differences in regio- and stereoselectivities and is suitable to metabolize a large fraction of drug chemistry s...
متن کاملProbing Steroidal Substrate Specificity of Cytochrome P450 BM3 Variants.
M01A82W, M11A82W and M01A82WS72I are three cytochrome P450 BM3 (CYP102A1) variants. They can catalyze the hydroxylation of testosterone (TES) and norethisterone at different positions, thereby making them promising biocatalysts for steroid hydroxylation. With the aim of obtaining more hydroxylated steroid precursors it is necessary to probe the steroidal substrate diversity of these BM3 variant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 18 شماره
صفحات -
تاریخ انتشار 2005